Physics of heterostructure interfaces as a source for quantum information processing

Martin Gmitra

Institute of Physics, P. J. Šafárik University in Košice

1st eduQUTE school on quantum technologies

February 19 – 22, 2018

Contents

• Metallic junctions

semiconductor / ferromagnetic interface

spin-orbit coupling fields in solids magnetic control of the fields semiconducting wires & Majorana bound state story

van der Waals heterostructures

1D semiconductor / 2D superconductor interface

proximity induced spin-orbit coupling effects proposal Majorana bound states in carbon nanotubes

Spin-orbit coupling essentials

Concept of spin-orbit coupling field in solids

time reversal + space inversion symmetry

 $\varepsilon_{{\bf k},\uparrow} = \varepsilon_{{\bf k},\downarrow}$

time reversal symmetry only

$$\varepsilon_{\mathbf{k},\uparrow} = \varepsilon_{-\mathbf{k},\downarrow}, \quad \varepsilon_{\mathbf{k},\uparrow} \neq \varepsilon_{\mathbf{k},\downarrow}$$

 $\Omega(-\mathbf{k}) = -\Omega(\mathbf{k})$

effective k-dependent spin-splitting magnetic field

$$\mathcal{H}_{\rm so}(\mathbf{k}) = \frac{\hbar}{2} \mathbf{\Omega}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

 $\mathcal{H}_{\mathrm{D}}(\mathbf{k}) = \gamma(\sigma_y k_y - \sigma_x k_x) \longrightarrow \Omega_{\mathrm{BIA}}(\mathbf{k}) = \gamma(-k_x, k_y)$ bulk inversion asymmetry (BIA)

 $\mathcal{H}_{BR}(\mathbf{k}) = \alpha(\sigma_y k_x - \sigma_x k_y) \longrightarrow \mathbf{\Omega}_{SIA}(\mathbf{k}) = \alpha(-k_y, k_x)$ structure inversion asymmetry (SIA)

Combination of the linearized spin-orbit fields

symmetry lowering

 $\mathcal{H}_{\mathrm{D}}(\mathbf{k}) = \gamma(\sigma_{y}k_{y} - \sigma_{x}k_{x}) \longrightarrow \Omega_{\mathrm{BIA}}(\mathbf{k}) = \gamma(-k_{x}, k_{y})$ bulk inversion asymmetry (BIA)

 $\mathcal{H}_{BR}(\mathbf{k}) = \alpha(\sigma_y k_x - \sigma_x k_y) \longrightarrow \Omega_{SIA}(\mathbf{k}) = \alpha(-k_y, k_x)$ structure inversion asymmetry (SIA)

SOC fields in bulk III-V semiconductors

G. Dresselhaus, Phys. Rev. 100, 580 (1955)

J. Y. Fu and M. W. Wu, JAP **104**, 093712 (2008)

Spin-orbit coupling parameters for bulk III-V

extracted parameters for conduction band

		GaAs	GaSb	InAs	InSb
zinc-bl	inc-blende				
Γ_{6c}	$\begin{aligned} \mathbf{\Omega}(\mathbf{k}) &= \gamma [k_x (k_y^2 - k_z^2), k_y (k_z^2 - k_x^2), k_z (k_x^2 - k_y^2)] \\ \gamma \; [\text{eV Å}^3] \end{aligned}$	9.13	105.3	21.4	200
wurtzite [a] [b]		(47) [b]	(209) [b]		
Γ_{7c}	$oldsymbol{\Omega}(\mathbf{k}) = (lpha + \gamma [bk_z^2 - k_\parallel^2])(k_y, -k_x, 0)$				
	lpha [eV Å] $\gamma [eV Å^3]$	$0.04 \\ 6.51$	$0.078 \\ 52.1$	$0.3 \\ 134.2$	$0.76 \\ 904$
Гee	$b = (\alpha + \gamma [bk_{-}^2 - k_{-}^2])(k_{-} - k_{-} 0)$	0.54	1.29	-1.25	-0.93
1 00	$\alpha [eV Å]$	0.1	0.49	0.04	0.34
	γ [ev A°] b	0.03	-0.04	-0.06	-0.07

[a] M.I. McMahon, R.J. Nelmes, Phys. Rev. Lett. **95**, 215505 (2005) [b] D. Kriegner *et al.*, Nano Lett. **11**, 1438 (2011)

[*] A.N. Chantis et al., Phys. Rev. Lett. 96, 086406 (2006)

M. Gmitra, J. Fabian, Phys. Rev. B 94, 165202 (2016)

DFT calculations WIEN2k + mBJ

Spin-orbit fields in zinc-blende

growth directions of quantum wells

Manifestation of spin-orbit fields

magnetoresistive effects

GMR/TMR (giant magnetoresistance)	GMR/TMR (giant magnetoresistance)	Hall effect	SPAR (spin polarized Andreev reflection)
TAMR (tunneling anisotropic magnetoresistance)	CAMR (crystalline anisotropic magnetoresistance)	PHE (planar Hall effect)	MAAR (magnetoanisotropic Andreev reflection)
AlGaAs GaAs Fe Co Au GaAs substrate	Al ₂ O ₃ MgO Fe GaAs	har the transformed to the trans	Ferromagnet
J. Moser <i>et al.</i> , PRL 99 , 056601 (2007)	T. Hupfauer <i>et al.</i> , Nat. Comm. 6 , 7374 (2015)	X. Fan <i>et al.</i> , Nat. Comm. 4 , 1799 (2013)	P. Högl <i>et al</i> ., PRL 115 , 116601 (2015)

Symmetry of Fe/GaAs (001) interface

advances of epitaxial growth

Exploring symmetry

a path to the effective Hamiltonian

$$E, C_2, \sigma_{xz}, \sigma_{yz}$$

$$H_{\mathrm{plane}} \sim \left(lpha x^2 + eta y^2
ight) imes z$$

$$k_x \sim x, \ k_y \sim y, \quad \sigma_x \sim yz, \ \sigma_y \sim -xz$$

$$H_{so} \sim \alpha k_x \sigma_y + \beta k_y \sigma_x$$

generic linear in k spin-orbit coupling of $\ C_{2v}$

Parameters depend on magnetization

most general Hamiltonian for C_{2v}

$$\mathcal{H}_{so} = \mu_n(k_x, k_y, \theta) k_x \sigma_y + \eta_n(k_x, k_y, \theta) k_y \sigma_x$$

$$\mu_n(k_x, k_y, \theta) = \mu_n^{(0)}(\theta) + \mu_n^{(1)}(\theta)k_x^2 + \mu_n^{(2)}(\theta)k_y^2 + \dots$$
$$\eta_n(k_x, k_y, \theta) = \eta_n^{(0)}(\theta) + \eta_n^{(1)}(\theta)k_x^2 + \eta_n^{(2)}(\theta)k_y^2 + \dots$$

$$\Omega(k_x, k_y, \theta) = \begin{pmatrix} \eta_n(k_x, k_y, \theta) \\ \mu_n(k_x, k_y, \theta) \\ 0 \end{pmatrix}$$

Spin-orbit field obtained from bands

$$\Omega_{nx}(k_x, k_y, \theta) = \sigma \left[\frac{E_n(\mathbf{k}, \theta) - E_n(-\mathbf{k}, \theta) + E_n(-k_x, k_y, \theta) - E_n(k_x, -k_y, \theta)}{4\cos\theta} \right]$$
$$\Omega_{ny}(k_x, k_y, \theta) = \sigma \left[\frac{E_n(\mathbf{k}, \theta) - E_n(-\mathbf{k}, \theta) - E_n(-k_x, k_y, \theta) + E_n(k_x, -k_y, \theta)}{4\sin\theta} \right]$$

M. Gmitra et al., PRL 111, 036603 (2013)

100

Magnetic control of spin-orbit symmetry

spin-orbit field for general k-point

k = 1% BZ

k = 12.5% BZ

M. Gmitra et al., PRL 111, 036603 (2013)

Symmetry of Fe/GaAs (001) interface

addressing the spin-orbit field by optics

anisotropic polar MOKE – Kerr rotation

S. Putz et al., Phys. Rev. B 90, 045315 (2014)

M. Buchner et al., Phys. Rev. Lett. 117, 157202 (2016)

Crystalline anisotropic magnetoresistance

$$CAMR(\theta) = \frac{U_{max}(\theta) - U_{min}(\theta)}{U_{max}(\theta) + U_{min}(\theta)}$$

 $\mathrm{CAMR}(\theta) \,\approx\, \frac{B+C+(C-B)\mathrm{cos}(4\theta)-4F\mathrm{cos}(2\theta)}{4A}$

reduction of Fe thickness

T. Hupfauer et al., Nat. Comm. 6, 7374 (2015)

Spin-orbit field in core/shell wurtzite nanowires

role of GaAs/AlGaAs interface

- pioneering optical spin injection into a single free-standing nanowire
- *g*-factor significantly different than in the cubic zinc-blende phase
- highly anisotropic spin relaxation due to SOC at core/shell interface

S. Furthmeier et al., Nat. Comm. 7, 12413 (2016)

Conduction subbands in nanowires (50 nm)

an element for Topological Quantum Computation

Topological Quantum Computation

approach to fault-tolerant quantum computation

Localized excitations on an interacting Hamiltonian

(Laughlin fractional Quantum Hall liquid)

• Defects in an ordered system

(Abrikosov vortices in topological superconductor / domain wall in 1D system)

simplest realization of non-Abelian anyons (no anionic excitations) is a quasiparticle or defect supporting a **Majorana zero mode** (zero energy mid-gap excitation)

What is the Majorana zero mode?

zeroth order crash course

- is a fermionic operator γ • squares to unity $\gamma^2 = 1$
 - Majorana fermion

- commutes with the Hamiltonian of a system
- degenerate ground state / non-local entanglement
- decomposition to conventional fermions

 $[\gamma, H] = 0$ $\{\gamma_i, \gamma_j\} = 2\delta_{ij}$ $c_j = \frac{1}{2}(\gamma_{2j-1} + i\gamma_{2j})$

To realize Majorana excitations $\gamma = \gamma^{\dagger}$ we seek for, e.g., $\gamma = uc + vc^{\dagger}$ with energy dependent coefficients of Bogoliubov quasiparticle excitations

BCS **spinless** fermion pairing → Cooper pair wave function must be **antisymmetric** therefore Majorana zero-energy excitations should exist in *p*-wave superconductors

Spinless *p*-wave superconductors

continuum mean-field many-particle Hamiltonian

$$\mathcal{H} = \int dx \left\{ \psi^{\dagger}(x) \left(\frac{p^2}{2m} - \mu \right) \psi(x) + \Delta' [\psi^{\dagger}(x) \partial_x \psi^{\dagger}(x) + \text{h.c.}] \right\}$$

associated Bogoliubov—de Gennes Hamiltonian

$$H = \begin{pmatrix} \xi_p & -i\Delta'p \\ i\Delta'p & -\xi_p \end{pmatrix} = \xi_p \tau_z + \Delta' p \tau_y \quad \text{where} \quad \xi_p = p^2/2m - \mu$$

excitation spectrum for an infinite system

$$E_k = \pm (\xi_k^2 + {\Delta'}^2 k^2)^{1/2}$$

effective BdG field in particle-hole space

$$H_k = \mathbf{b}_k \cdot \mathbf{\tau}_{\mathbf{v}}$$

$$\hat{\mathbf{b}}_k = \mathbf{b}_k / ||\mathbf{b}_k|| = igg($$

$$\begin{pmatrix} 0 \\ \Delta' k / \sqrt{(\Delta' k)^2 + \xi_k^2} \\ \xi_k / \sqrt{(\Delta' k)^2 + \xi_k^2} \end{pmatrix}$$

Pauli matrices in particle-hole space

Spinless *p*-wave superconductors

$$E_k = \pm ((k^2/2m - \mu)^2 + \Delta'^2 k^2)^{1/2}$$

$$\hat{\mathbf{b}}_k = \begin{pmatrix} 0 \\ \Delta' k / \sqrt{(\Delta' k)^2 + \xi_k^2} \\ \xi_k / \sqrt{(\Delta' k)^2 + \xi_k^2} \end{pmatrix}$$

Domain wall Majorana excitations

"Synthetic" realization of Majorana excitations

experimentally accessible system

Basic ingredients:

- 1. proximity coupling to s-wave superconductor
- 2. spin polarization
- 3. spin-orbit coupling

$$g\mu_{\rm B}B > \sqrt{\Delta^2 + \mu^2}$$

Carbon nanotube hosts Majorana zero mode

novel proposal

^[*]M. Marganska et al., arXiv: 1711.03616v1

2H polytype of NbSe₂

- SG: #194 (P6₃/mmc)
- PG: D_{6h}
- $a = 3.445 \text{ Å}^{[*]}$
- c = 12.55 Å

^[*]J. Xu et al., Digest Journal of Nanomaterials and Biostructures **10**, 505 (2015)

Anisotropic type-II superconductor

^[*]J. A. Galvis et al., arXiv:1711.09269 (2017)

^[*]M. Leuroux et al., PRB **92**, 140303 (2015)

^[*]G. Gruener, Rev. Mod. Phys. **60**, 1129 (1988)

3x3 CDW in single layer NbSe₂

^[*]M. M. Ugeda et al., Nat. Phys. **12**, 92 (2016)

Peeling-off NbSe₂ layer-by-layer

^[*]X. Xi et al., Nat. Nanotech. **10**, 765 (2015)

Ising pairing by spin-momentum locking

Fermi surface/superconductivity

or two-band superconductivity?

anisotropic gap

^[*]Y. Noat et al., PRB **92**, 134510 (2015)

Coupling of two sub-systems

Interaction of two bands

^[*]solution:
$$E_{1,2} = \frac{1}{2} \left[\epsilon_s + t \cos(k) \pm \sqrt{\epsilon_s^2 + 4V^2 - 2\epsilon_s t \cos(k) + t^2 \cos^2(k)} \right]$$

What would see ARPES?

$$\begin{split} G_{11}^{\mathrm{R}}(\omega,k) &= \frac{1}{\omega - t\cos(k) + i\eta - V^2 g_2^{\mathrm{R}}} & & \\ G_{22}^{\mathrm{R}}(\omega,k) &= \frac{1}{\omega - \epsilon_{\mathrm{s}} + i\eta - V^2 g_1^{\mathrm{R}}} & & \\ \Sigma_{11}(\omega,k) &= V^2 g_2^{\mathrm{R}} & & \\ \Sigma_{22}(\omega,k) &= V^2 g_1^{\mathrm{R}} & & \\ A(\omega,k) &= \sum_i A_i(\omega,k) & & \\ A_i(\omega,k) &= \frac{-2\mathrm{Im}[\Sigma_{ii}(\omega,k)]}{(\omega - \epsilon_i(k) - \mathrm{Re}[\Sigma_{ii}(\omega,k)])^2 + (\mathrm{Im}[\Sigma_{ii}(\omega,k)])^2} & \\ \end{split}$$

PERIODIC TABLE OF CARBON NANOTUBES

(2.9) (1.4) (3.6) (4.0) (5.0) 05.00 (7,0) (8.0) (2.0) (10.0) (11.9) (12.0) (13.0) (14.0) (15.0) (16.0) (17.0) 1:111:57 2:2 2.35 9.9 7.83 10:10 8.62 0.78 3:3 3.13 4:4 3.92 55 4.70 676 5.48 7:7 6.27 8:8 7.05 11:11 9.40 12:12 10:18 13:13 10:07 14:14 11:75 15:15 12:54 16:16 13.32 17:17 5424 8,717 0.740 2.570 1.087 0.082 1.494 0.185 1.463 0.827 1.017 0.046 0.643 0.778 0.000 0.552 0.629 0º 4.26 4.26 09 4.26 02 4.26 0^{6} 4.26 62 4.26 0* 4.26 0° 4.26 0° 4.26 09 4.26 02 4.26 02 4.26 02 4.26 00 4.26 - 0° 4.26 62 4.26 02 4.76. 0 44 12. 16 20 24 28 32. 36. 40 48. 52 56 60 6.016.11 (2.1) (10.1) and (12.1) (13.1) (14.1) (15.1) 16.11 (3,1) (4, 1) (7,1)68.10 1:3 4.36 1:1 5,14 1:1 5.91 1:3 6.69 1:1 7.47 1:1 8.25 13 9.04 1:1 9.82 1:1 12.16 1.36 13 2.07 1:1 2.82 1:1 3.59 1:1 10.60 1:3 11.38 1:1 12.94 1:3 13.73 0.058 0.737 2.523 3.594 0.267 1.319 1.821 0.110 0.947 1,188 0.877 0.036 0.608 0.693 0.024 0.510 0.0 651 10.9° 23.74 8.9° 27.95 7.6° 10.73 6.5° 36.42 5.8° 40.67 5.2° 14.97 4.7° 49.16 4.3° 53.42 4.0° 19.22 3.7° 61.92 3.4° 66.18 3.2° 23.48 3.0° 74.69 2.8° 11.28 19.1* 15.37 13.9* 2.46 307 172 76 292 148 532 628 (6.2) 17.25 (14.2) (4.2) (5.2) 64.25 (9.2) (10.21 (11.2) (12.2) (13.2) (2,2)(3.2)1:1 4.15 2:2 4 89 1:3 5.65 2:2 6.41 1:1 7.18 2.6 7.95 1:1 8.72 22 9.50 1:3 10.27 2:2 11.05 1:1 11.83 2.6 12.61 2.2 2.71 2:6 3.41 11 13.39 1,139 1,380 0.057 0.0 1.975 2.146 0.114 0.836 0.990 0.041 0.665 0.766 0.027 0.553 0.623 18.58 23.4° 11.28 19.1° 8.87 16.1° 15.37 13.9° 34.89 12.2° 6.51 10.9° 43.26 9.8° 23.74 8.9° 17.23 8.2° 27.95 7.6° 60.14 7.1° 10.73 6.6° 68.61 6.2° 36.42 5.8° 2.46 30% 248 (10,3) 56 1036 52 104 268 412 196 344 152 (9.3) (12.3) 64.35 (6.3) (7.3) (8.3) 1:1 10:00 3.9 4.77 1:1 5.48 1:1 6.22 3:3 6.96 1:1 7.72 1:1 8.47 3:3 9.24 1:1 10.77 3:9 11.54 1:1 12.31 4.07 1:1 13.9 3:3 13.66 0,744 0.844 1.529 0.057 0,980 1,104 0.043 0.030 0.604 0.678 0.021 0.0 1,509 0.510 30° 25.93 25.3° 29.84 21.8° 11.28 19.1° 37.89 17.0° 41.99 15.3° 15.37 13.9° 50.26 12.7° 54.43 11.7° 5.51 10.9° 62.80 10.2° 67.00 9.5° 23.74 8.9° 75.42 2.46 556 (10,4) 316 652 155 (4.4) (5.4) (6.4) 0.4 (8.4) (OA) (HA) (12.4) (13.4) (14.4) 22 7.56 1:3 8.29 444 9.04 1:1 9.79 2.6 10.54 5.43 4:12 6.12 1:1 6.83 1:1 11.30 4/4 12.05 1:3 12.83 2:2 13.59 1:1 1,191 0.032 0.852 0.919 0.028 0.668 0.734 0.022 0.0 1,205 0.553 0.606 (nam) 80° 33.30 26.3° 18.58 23.4° 13.70 21.1° 11.28 19.1° 49.16 17.5° 8.87 16.1° 57.35 14.9° 15.37 13.9° 21.88 13.0° 34.89 12.2° 73.96 11.5° 2.46 440 112 532 . 104 724 208 3:16 dist. 152 124 536 1204 (8,5) (9.5) (10.5) (11.5) (12.5) (13.5) (6.5) (7.5) $E_{\alpha}(eN)$ 5:15 7.47 1:1 10.36 1:1 8.18 1:1 8.90 1:3 9.63 6.87 5:5 11.11 1:3 11.86 1:1 12.61 1:1 13.36 4:12 14.12 7 (Å) 1,000 0.978 0.020 0.749 0.788 0.020 0.604 0.649 0.016 0.508 0.0 2.46 30° 40.67 27.0° 44.51 24.5' 16.14 22.4° 52.38 20.6° 11.28 19.1° 20.15 17.8° 64.51 16.6° 68.61 15.6° 24.24 14.7° 15.37 13.9° 172 916 1036 604 140 268 (8.4) (10.6) (9,6) (11, 6)12.60 8.14 6:18 8.83 1:1 9.53 2:2 10.24 3:3 10.97 2:2 11.70 1:1 12.44 6:6 13.18 1:1 13.93 2.2 The semi-empirical bandgap E, is calculated following H. Yorkawa and S. Maramatsu, Phys. Rev. B 52, 2723. 0.853 0.830 0.013 0.667 0.014 0.550 0.581 10.0 0.689 (1995) for the semiconducting tubes ino curvature effects; |Vers|-2.7 and y 0.43) and A. Kleiner and S. 302 48.04 27.5* 25.93 25.3* 18.58 23.4* 29.84 21.8* 63.66 20.4* 11.28 19.1* 71.71 18.0* 37.89 17.0* 2.45 228 \$92 164 11322 values are evaluated from the expressions below. (9.7) 100,7) (14.7) (8.7) (11.7)(12.7) 1:1 11.59 1:3 14:51 9.50 7:21 10.18 1:1 10.88 1:3 12.31 1:1 13.04 1:1 13.77 0.0 0.743 0.722 0.009 0.600 0.613 0.011 0.505 cathon-rathon distance: oc. c = 1.021 Å (graphits) 30° 55.42 27.8° 59.22 25.9° 21.03 24.2° 67.00 22.7° 70.95 21.4° 24.98 20.2° 2.46 11.28 19.1 $a = \sqrt{3}a_{C,C} = 2.461 \text{ Å}$ 676 772 292 9.8.8 1108 412 integlia of suilt vectors metallik tube (9.8) (10.8) (12.8) (13,8) (8.8) 01.0 10.86 8.24 11.54 1:1 12.24 22 12.94 1:3 13.66 4:4 14.38 1:1 $a_1 = (\sqrt{3}, +1)a/2$ and $a_2 = (\sqrt{3}, -1)a/2$ and: weeters: 0.545 0.552 in n 0.658 0.639 0.007 reciproced unit vectors: $b_1 = (1/\sqrt{1}, \pm 1)2\pi/a$ and $b_2 = (1/\sqrt{3}, \pm 1)2\pi/a$. 30% 62.80 28.1" 33.30 26.3" 2.45 23.48 24.8% 18.58 23.4^b 78.26 22.2 oblight montents $G_n = m_1 - m_2$ (where $n, m \in \mathbb{Z}$). (10.9) 01.97 (13.9) (9.9) (12.9) semimetallic tube 12.21 9.27 12.99 1:1 13.59 1:1 14.30 3:3 15.01 1:1 $L = |C_{\lambda}| = \alpha \sqrt{\alpha^2 + m^2 + \alpha \omega}$ (where $0 \le m \le \alpha$). circumference of tabe: 0.573 0.498 0.0 0.590 0.005 disapcter of tube: $d_0 = L/\pi$ 70.18 28.3* 73.96 26.7* 25.93 25.3* 81.67 24.0* 2.45 308 chiral angle: $\theta = \omega(\alpha_1, C_h) = \arctan \frac{m\sqrt{3}}{2m - m} \in [0^\circ, 30^\circ]$ 1204 semiconducting tube (10,10) (11, 10)112.100 13.57 10:30 14:25 1:1 14.95 1:1 highest constron divisor of n, m: $d = \ln d(n, m)$ 0.535 0.520 0.0 30* 77.56 28.42 40.67 27.05 2.46 highest common divisor of 2n + m, 2m + m de = hed(2n + m, 2m + m)1324 728 d , if m we is not a multiple of 34 (11,11) (12, 11) 3d , if a -- in is a multiple of 2d 14.93 11:33 15.61 Quantum of 0.849 0.0 transformed vector of 1D and ord: $T = t_1 a_1 + t_2 a_2$ (where $t_1, t_2 \in \mathbb{Z}$) 2.46 30° 84.94 28.6° $h = 1.26 \pm 0.066$ - (2n) milde South of T: $T = |T| = L\sqrt{3}/d_{ee}$ When every atom math number of atoms per 1D will call: $N = (2L)^2/(a^2d_F)$, and N/2-beingona/unit cell

www.guantumwise.com

Chiral carbon (8,4) nanotube

diameter of 8.3 Å 112 atoms in unit cell^[**]

[*]source: https://en.wikipedia.org/wiki/Carbon_nanotube
[**]input: TubeGen3.3, J T Frey, University of Delaware

Band structure of cnt(8,4)

Joint spaghetti

Spin-orbit coupling form

Spin-orbit coupling form

Save the Majoranas!

 $^{[^{\star}]}\textsc{Note:}$ magnetic splitting in 10 Tesla would be 1 meV

Ultrathin films of superconductors

a platform for topological superconducivity (Pb or β -Sn)

- Cooper pairing
- broken inversion symmetry
- broken time-reversal symmetry

Advantage: *interface or proximity effect free* system to obtain SC in a strong SOC systems

C. Lei, H. Chen, A.H. MacDonald, arXiv:1801.05020

large *g*-factor E-field 0.1 V/nm strain of 1%

- ~ 100 350
- ~ 2 meV subbands shift
- ~ 200 meV Fermi level tunning

SC metal Film

$$w/2N \simeq \delta \varepsilon_{2D}$$

 $H_{\mathrm{c},\perp} \approx 1.6 \,\mathrm{T} \qquad H_{\mathrm{c},\parallel} \approx 55 \,\mathrm{T}$

Conclusions

- symmetry dictates topology of spin-orbit coupling fields
- **appreciable proximity** induced spin-orbit coupling effects in vdW heterostructures •
- carbon nanotubes could host Majorana bound states •
- promising topological superconductivity in thin films of heavy elements

Acknowledgments

Tobias Frank Klaus Zollner

Petra Högl

Paulo E. Faria Marcin Kurpas Denis Kochan Sergej Konschuh Alex Matos

Magda Marganska Flo Dirnberger

Jaroslav Fabian

