

Andrej Gendiar

(andrej.gendíar@savba.sk)

Research Center for Quantum Information Institute of Physics, Slovak Academy of Sciences

1st eduQUTE in Bratislava, Feb 19th - 22nd, 2018

Phase transitions

Numerical methods (in terms of Tensor Networks)

*	DMRG	Density Matrix Renormalization Group
*	CTMRG	Corner Transfer Matrix Renormalization Group
*	MPS	Matrix Product States
*	TEBD	Time Evolving Block Decimation
*	HOTRG	Higher-Order Tensor Renormalization Group
•	TPVF	Tensor Product Variational Formulation
*	MERA	Multi-scale Entanglement Renormalization Ansatz

Entanglement Entropy

(What else is it good for?)

 $H|\psi_n\rangle = E_n|\psi_n\rangle, \qquad n = 0, 1, 2, \dots$ $\rho'_A = Tr_B\{|\psi_0(A, B)\rangle\langle\psi_0(A, B)|\}$ $S = -Tr(\rho'_A \log_2(\rho'_A)) \ge 0$

A quantum state of Hamiltonian is like "a state of mind in brain"

Quantum mechanics Introduction to numerics

Introduction to solving quantum-mechanical problems

- > Only <u>a few</u> simple systems are exactly (analytically) solvable!
- ➤ The aim is to find out <u>efficient approximations</u>
 - either analytically (by pen and heaps of paper and time)
 - or numerically (by computers and much shorter time)
- ➢ If exact solutions exist, they may serve as <u>benchmarks</u>.
- Two examples: Let us study <u>two simplest</u> quantum systems numerically At first, continuous variables has to be discretized.

A simple example: 1D particle in a box (infinite potential well)

j=1

 $\overline{j=1}$

Exact solution exists!

For the 1D particle in the box we get:

	Relative error $\varepsilon = (E_n^{\text{num}} - E_n^{\text{exact}}) / E_n^{\text{exact}} \times 100\%$				
N	\mathcal{E}_0 [%]	<i>E</i> ₁ [%]	<i>E</i> ₂ [%]	<i>E</i> ₃ [%]	
100	1.978	2.002	2.042	2.098	
500	0.399	0.400	0.402	0.404	
1 000	0.200	0.200	0.200	0.201	
5 000	0.040	0.040	0.040	0.040	
10 000	0.020	0.020	0.020	0.020	
50 000	0.004	0.004	0.004	0.004	

Another simple example: Linear Harmonic Oscillator in 1D V(x) $\left[-\frac{\hbar^2}{2m}\Delta + \frac{1}{2}m\omega^2 x^2\right]\Psi(x) = E \Psi(x)$ $-\Delta \Psi(x) + x^2 \Psi(x) = 2E' \Psi(x)$ $-\Delta \Psi(x_i) + (x_i)^2 \Psi(x_i) = 2E' \Psi(x_i),$ $-\frac{\Psi\left(\frac{(i-1)L}{N}\right) - 2\Psi\left(\frac{iL}{N}\right) + \Psi\left(\frac{(i+1)L}{N}\right)}{\left(\frac{L}{N}\right)^{2}} + \left(\frac{iL}{N}\right)^{2}\Psi\left(\frac{iL}{N}\right) = 2E' \Psi\left(\frac{iL}{N}\right)$ +L/2-L/2 $\Psi_{-\frac{N}{2}}$ $\Psi_{-\frac{N}{2}}$ Ψ_{-1} $\Psi_{_{-1}}$ $= \tilde{E}_0$ Ψ_0 Ψ_0 0 0 -1 2 0 0 $0 \quad 0 \quad 0 \quad 1^2$ 0 Ψ_1 0 Ψ_1 $0 0 0 0 2^2$ $0 \quad 0 \quad 0 \quad \cdots \quad 2$ 0 0 $\Psi_{\frac{N}{2}}$ $\Psi_{\frac{N}{2}}$

$$\hat{H} = -\sum_{i=-N/2}^{N/2} \left(\hat{c}_i^+ \hat{c}_{i+1} + \hat{c}_{i+1}^+ \hat{c}_i \right) + \sum_{i=-N/2}^{N/2} \left[2\hat{c}_i^+ \hat{c}_i + \left(i - \frac{L}{2}\right)^2 \right] = \sum_{i=0}^N \left(\hat{a}_i^+ \hat{a}_i + \frac{1}{2} \right) \approx -\frac{\partial^2}{\partial x^2} + x^2 + x^2$$

Exact solution exists:

Hermite polynomials

$$E_{n} = \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \dots$$

$$\Psi_{n}(x) = \frac{1}{\sqrt{2^{n} n!}} \sqrt{\frac{1}{\sqrt{\pi}}} \exp\left(-\frac{x^{2}}{2}\right) \underbrace{(-1)^{n} \exp\left(x^{2}\right) \frac{d^{n}}{dx^{n}} \left[\exp\left(-x^{2}\right)\right]}_{H_{n}(x)}$$

Numerical efficiency when diagonalizing matrices

DMRG: developed to reach a controlled accuracy of exact diagonalization

Single-particle problem

Size	Matrix dimension of Hamiltonian		
Ν	Exact diagonalization	DMRG	
10	10	4	
100	100	4	
1000	1000	4	
10 000	10 000	4	

Many-body problem

Lattice Estimated memory consumption in a cor size			The model
L	Exact diagonalization	DMRG	
10	1 MB	≈ 1 MB	
100	10 ⁵⁰ GB	≈ 100 MB	Heisenberg model
1000	10 ⁶⁰⁰ GB	≈ 1 GB	
10			
10	I GB		
100	10 ¹⁰⁰ GB	≈ 1 GB	Hubbard model
1000	10 ¹²⁰⁰ GB	≈ 10 GB	

Schrödinger equation (for a single particle in 3D)

$$i\hbar \frac{\partial}{\partial t} |\Psi(\vec{r},t)\rangle = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r},t)\right] |\Psi(\vec{r},t)\rangle$$

Time-independent Schrödinger equation (for N particles in one-dimension)

 $\sum_{j=1}^{N} \left[-\frac{\hbar^2}{2m_j} \frac{\partial^2}{\partial x_j^2} + V(x_1, x_2, \dots, x_N) \right] |\Psi_n(x_1, x_2, \dots, x_N)\rangle = E_n |\Psi_n(x_1, x_2, \dots, x_N)\rangle$

Time-independent Schrödinger equation in second quantization (for N interacting particles in one-dimension)

$$\underbrace{\left[-t\sum_{j=1}^{N-1} \left(c_{j}^{+}c_{j+1}+c_{j+1}^{+}c_{j}\right)-\sum_{j=1}^{N} V_{j}c_{j}^{+}c_{j}-U\sum_{j=1}^{N-1} c_{j}^{+}c_{j}c_{j+1}^{+}c_{j+1}\right]}_{H}|\phi_{n}\rangle=E_{n}|\phi_{n}\rangle$$

Solving the Schrödinger equation means to find E_n and $|\phi_n\rangle$ (e.g. by diagonalizing the Hamiltonian).

Can we prepare an entangled state(?!)

$$H = -J(S_1^x \otimes S_2^x + S_1^y \otimes S_2^y + S_1^z \otimes S_2^z) = \begin{pmatrix} -J & 0 & 0 & 0 \\ 0 & J & -2J & 0 \\ 0 & -2J & J & 0 \\ 0 & 0 & 0 & -J \end{pmatrix}$$

Diagonalize the 4 × 4 Hamiltonian matrix $H|\phi_n\rangle = E_n |\phi_n\rangle$, n = 0,1,2,3

$$\underline{Result}: \qquad E = \begin{pmatrix} -J & 0 & 0 & 0 \\ 0 & -J & 0 & 0 \\ 0 & 0 & -J & 0 \\ 0 & 0 & 0 & 3J \end{pmatrix} \qquad \qquad \begin{vmatrix} \phi_0 \rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad |\phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \\ |\phi_2 \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \qquad |\phi_3 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$

$$|\phi_n\rangle = \sum_{i=\uparrow}^{\downarrow} \sum_{j=\uparrow}^{\downarrow} \phi_{ij} |ij\rangle = \phi_{\uparrow\uparrow}^{(n)} |\uparrow\uparrow\rangle + \phi_{\uparrow\downarrow}^{(n)} |\downarrow\downarrow\rangle + \phi_{\downarrow\downarrow}^{(n)} |\downarrow\downarrow\rangle = \phi_{\uparrow\uparrow}^{(n)} \begin{pmatrix}1\\0\\0\\0\end{pmatrix} + \phi_{\uparrow\downarrow}^{(n)} \begin{pmatrix}0\\1\\0\\0\end{pmatrix} + \phi_{\downarrow\uparrow}^{(n)} \begin{pmatrix}0\\0\\1\\0\end{pmatrix} + \phi_{\downarrow\downarrow}^{(n)} \begin{pmatrix}0\\0\\0\\0\end{pmatrix} + \phi_{\downarrow\downarrow}^{(n)}$$

Reduced density matrix

Let us start by finding spectrum of energies E_n and the corresponding eigenstates $|\psi_n\rangle$ of a given Hamiltonian (that is how the QM works)

 $H|\psi_n\rangle = E_n|\psi_n\rangle$

- ✤ Reduced density matrix in a pure state
 \[
 \mathcal{P}' = Tr_{env}(|\psi_0 \langle \psi_0|)

 ♦ Reduced density matrix in a mixed state \[
 \not transform transform to transform transform to transform transfo
- > What is the reduced density matrix typically good for?
 - ✓ To obtain expectation (mean) values of operators $(A_s) = Tr_s(A_s\rho')$
 - ✓ Quantum entanglement von Neumann entropy $S = -Tr(\rho' \log_2(\rho'))$
- > Reduced density matrix (detail): $\rho'_s = Tr'_e |\psi_0(s, e)\rangle \langle \psi_0(s, e)|$
 - ✓ System interacts with environment

✓ Entanglement entropy $S_s = S_e = -Tr_e(\rho'_e \log_2(\rho'_e))$

Information inside the reduced density matrix

The reduced density matrix completely describes a subsystem (in contact with environment).

Properties of the entanglement entropy:

 $S = -Tr_s(\rho'_s \log_2 \rho'_s) \ge 0$

If the reduced density matrix is diagonalized $U^+ \rho'_s U = \Omega$,

the eigenvalues sorted in descending order are: $\omega_1 \ge \omega_2 \ge \omega_3 \ge \dots \ge \omega_N$

$$U^{+}\rho'_{s} U = \Omega = \begin{pmatrix} \omega_{1} & 0 & 0 \\ 0 & \omega_{2} & 0 & \cdots \\ 0 & 0 & \omega_{3} \\ \vdots & \ddots \\ 0 & 0 & \omega_{3} \\ \vdots & \ddots \\ 0 & 0 & \omega_{3} \\ \vdots & \ddots \\ 0 & 0 & \omega_{3} \\ \vdots & \ddots \\ 0 & 0 & \omega_{3} \\ \vdots & \ddots \\ 0 & 0 & \omega_{N} \end{pmatrix}$$

$$(M_{+}) = (M_{+}) + (M_{+})$$

Entanglement entropy for quantum spin system $S = -Tr(\rho' \log_2 \rho')$

Decay of the singular values (Schmidt coefficients) d_{ξ}

Comparison between the thermodynamic entropy and entanglement entropy

Matrix Product State SVD and Entanglement

(and it's like playing a Tetris game...)

(and it's like playing a Tetris game...)

(and it's like playing a Tetris game...)

2D state $|\phi\rangle$

For <u>open/fixed</u> boundary conditions

For <u>periodic</u> boundary conditions (it is a torus!)

(and it's like playing a Tetris game...)

2D Tensor Network for Corner Transfer Matrix Renormalization Group

reduced density matrix

(and it's like playing a Tetris game...)

For more datails, read the outstanding review by Román Orús

Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany

Matrix diagonalizationM a square matrix $(n \times n)$

 $\frac{Singular \ value \ decomposition}{(Schmidt \ decomposition)}$ $M \ is \ a \ rectangular \ matrix \ (n \times m)$

 $M = UDU^{-1}$ $M = UDU^{+} \text{ (if Hermitian)}$ $U^{+}U = \mathbb{I}$

 $M = UDV^+$ $U^+U = V^+V = \mathbb{I}$

Decomposing a vector $|\psi\rangle$ into the product of two matrices A and B

Singular Value Decomposition (Schmidt decomposition)

of a $m \times n$ rectangular matrix M is the following decomposition:

 $M = USV^+$

Μ

- \boldsymbol{U} is a unitary $\boldsymbol{m} \times \boldsymbol{m}$ square matrix
- **S** is a diagonal $m \times n$ rectangular matrix (with non-negative real numbers)
- V is a unitary $n \times n$ square matrix (V⁺ is conjugate transpose of V)

and $U^+U = V^+V = 1$. Let k = min(m,n)

=

$$M = U \qquad S \qquad V^+$$

environment A_e

 $\boldsymbol{A}_{\boldsymbol{s}}$

The decomposition of a eigenstate Ψ_0 (Schmidt decomposition) onto the product of two matrices A_s and A_{ρ} :

system A_s

$$|\Psi_0\rangle = \sum_{ij} \Psi_{ij} | i\rangle_{s} | j\rangle_{e}$$

Analytically

$$\Psi_{0}(a_{1},a_{2},\ldots,a_{L/2},a_{L/2+1},\ldots,a_{L}) = \Psi_{a_{L/2+1},\ldots,a_{L}}^{a_{1},a_{2},\ldots,a_{L/2}} = \sum_{m} \underbrace{\bigcup_{m}^{a_{1},a_{2},\ldots,a_{L/2}}}_{A_{s}} \underbrace{\bigcup_{m}^{m}V_{a_{L/2+1},\ldots,a_{L}}^{*}}_{A_{e}}$$

$$\left|\Psi\right\rangle = \sum_{a_{1}a_{2}\cdots a_{6}} \underbrace{\Psi_{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}}}_{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} \right\rangle^{MPS \ (SVD)}_{decomposition} = \sum_{a_{1}a_{2}\cdots a_{6}} \sum_{\xi_{0}\cdots\xi_{6}} \left(A_{1}\right)^{a_{1}}_{\xi_{0}\xi_{1}} \left(A_{2}\right)^{a_{2}}_{\xi_{1}\xi_{2}} \left(A_{3}\right)^{a_{3}}_{\xi_{2}\xi_{3}} \left(A_{4}\right)^{a_{4}}_{\xi_{3}\xi_{4}} \left(A_{5}\right)^{a_{5}}_{\xi_{4}\xi_{5}} \left(A_{6}\right)^{a_{6}}_{\xi_{5}\xi_{6}} \left|a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}\right\rangle$$

Decay of the singular values (Schmidt coefficients) d_{ξ}

Decay of the singular values (Schmidt coefficients) d_{ξ}

andrej.gendiar@savba.sk

More details on singular value decomposition in 1D chain of 6 spins

The case of
$$L=6$$
 $|\Psi\rangle = \frac{a_1 - a_2 - a_3 - a_4 - a_5 - a_6}{\sum_{g_1} \sum_{g_2} \sum_{g_3} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_2} \sum_{g_2} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_1} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_1} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_1} \sum_{g_1} \sum_{g_1} \sum_{g_1} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_2} \sum_{g_1} \sum_{g_1}$

For any finite
$$L$$
 $|\Psi\rangle = \sum_{a_{l}a_{2}\cdots a_{L}} \Psi_{a_{l}a_{2}\cdots a_{L}} |a_{1}a_{2}\cdots a_{L}\rangle \stackrel{MPS^{-}(SVD)}{\equiv} \sum_{a_{l}a_{2}\cdots a_{L} \sum_{\xi_{0}\cdots\xi_{L}} \prod_{i=1}^{L} (A_{i})_{\xi_{i-1}\xi_{i}}^{a_{i}} |a_{1}a_{2}\cdots a_{L}\rangle$
 $= \sum_{a_{l}a_{2}\cdots a_{L}} \sum_{\xi_{0}=1}^{2^{0}} \sum_{\xi_{1}=1}^{2^{1}} \cdots \sum_{\xi_{L/2-1}=1}^{2^{L/2-1}} \sum_{\xi_{L/2-1}=1}^{2^{L/2-1}} \sum_{\xi_{L/2+1}=1}^{2^{0}} \cdots \sum_{\xi_{L}=1}^{2^{0}} \prod_{i=1}^{L} (A_{i})_{\xi_{i-1}\xi_{i}}^{a_{i}} |a_{1}a_{2}\cdots a_{L}\rangle \stackrel{(D<<2^{L/2})}{\approx} \sum_{a_{l}a_{2}\cdots a_{L} \xi_{0}\cdots\xi_{L}} \prod_{i=1}^{L} (A_{i})_{\xi_{i-1}\xi_{i}}^{a_{i}} |a_{1}a_{2}\cdots a_{L}\rangle$
Note that $\dim\left\{(A_{i})_{\xi_{i-1}\xi_{i}}^{a_{i}}\right\} = qD^{2}$, where , e.g., $q = \begin{cases} 2 & Heisenberg, \\ 4 & Hubbard. \end{cases}$

Consider spinless electrons on a linear chain with a finite length *L* divided into two parts with sizes *k* and L - k, where $(1 \le k \le L-1)$. We show that von Neumann entanglement entropies S_{sys} and S_{env} for both of the chains are <u>identical</u> for a fixed *k*.

$$\begin{aligned} a_{1} \quad a_{2} \quad a_{3} \quad a_{4} \quad a_{5} \quad a_{6} \quad a_{7} \quad a_{8} \quad a_{9} \quad a_{10} \\ \hline |a_{a}a_{2} \cdots a_{k-6}\rangle_{system} = |i\rangle_{sys} \quad |a_{k+1} \cdots a_{L}\rangle_{environment} = |j\rangle_{env} \qquad S_{sys} = -Tr\left(\rho_{sys}\log_{2}\rho_{sys}\right) \qquad \rho_{sys} = Tr_{env}|\Psi\rangle\langle\Psi| = \sum_{j} \Psi_{ij}\Psi_{j} \\ \rho_{env} = Tr_{sys}|\Psi\rangle\langle\Psi| = \sum_{i=1}^{2} \Psi_{ij}^{*}|\Psi\rangle \\ |\Psi\rangle = \sum_{i=1}^{2^{k-k}} \sum_{j=1}^{d-1} \Psi_{j}^{*}|i\rangle_{sys}|j\rangle_{env} = \sum_{i=1}^{S} \sum_{j=1}^{2^{1-k}} \sum_{j=1}^{m-min(2^{k}, 2^{1-k})} U_{\xi}^{i} \sum_{\frac{S}{\xi}} (V^{T})_{j}^{\xi}|i\rangle_{sys}|j\rangle_{env} = \sum_{\xi=1}^{m} S_{\xi} \sum_{j=1}^{2^{k-k}} U_{\xi}^{i}|i\rangle_{s} \sum_{j=1}^{2^{l-k}} (V^{T})_{j}^{\xi}|j\rangle_{e} = \sum_{i=1}^{m} S_{\xi}|\xi\rangle_{sys}|\xi\rangle_{env} \\ \rho_{sys} = Tr_{env}|\Psi\rangle\langle\Psi| = \sum_{j=1}^{2^{k-k}} \sum_{j=1}^{m} S_{\xi}|\xi\rangle_{sys}|\xi\rangle_{env} \sum_{\eta=1}^{m} \sum_{\frac{S}{\xi}} (V^{T})_{j}^{\xi}|i\rangle_{sys}|j\rangle_{env} = \sum_{\xi=1}^{m} S_{\xi} \sum_{j=1}^{k} U_{\xi}^{i}|\xi\rangle_{sys} \sum_{j=1}^{2^{l-k}} (V^{T})_{j}^{\xi}|j\rangle_{e} = \sum_{\xi=1}^{m} S_{\xi}^{i}|\xi\rangle_{sys}|\xi\rangle_{env} \\ \rho_{sys} = Tr_{env}|\Psi\rangle\langle\Psi| = \sum_{j=1}^{2^{k-k}} \sum_{\xi=1}^{m} S_{\xi}|\xi\rangle_{sys}|\xi\rangle_{env} \sum_{\eta=1}^{m} \sum_{s_{j=1}}^{m} \sum_{s_{j=1}}^{2^{k-k}} (V^{T})_{s}^{i}|\xi\rangle_{sys}|\xi\rangle_{sys}|\xi\rangle_{sys}|\xi\rangle_{env} \\ \rho_{sys} = Tr_{env}|\Psi\rangle\langle\Psi| = \sum_{j=1}^{2^{k-k}} \sum_{s_{j=1}}^{m} S_{j}|\xi\rangle_{sys}|\xi\rangle_{env} \sum_{\eta=1}^{m} \sum_{s_{j=1}}^{m} \sum_{s_{j=1}}^{m}$$

2

